ANALYSIS AND DESIGN OF INTZE TYPE OVERHEAD WATER TANK UNDER THE HYDROASTATIC PRESSURE BY USING SOFTWARE

Analyzing, Designing \& Comparison between Software based calculations and manual calculations of Intze type overhead tank under hydrostatic pressure

Shashank K Shambharkar
Research, Scholar,
Department of Civil Engineering, M.Tech (Structural Engg.)
V M Institute of Technology \& Science, Nagpur, Maharashtra, India.
shashank.ceng@gmail.com

Abstract

This study has been undertaken to investigate the determinants of behavior \& design of Intze type overhead tank under different cases of hydrostatic pressure i.e. full and empty condition applied on it and also comparing this conditions between manual calculations and software based calculation. This study also relates the accuracy of manual calculation and software based calculation. Water tanks are important public utility and industrial structure. The design and construction methods in reinforced concrete are influenced by the prevailing construction practices, the physical property of the material and the climatic conditions. Before taking up the design, the designer should first decide the most suitable type of staging of tanks and correct estimation of loads including statically equilibrium of structure particularly in regards to overturning of overhanging members shall be made. The design should be based on the worst possible combination of loads, moments and shears arising from vertical loads and horizontal loads acting in any direction when the tank is full as well as empty. In this research by performing the analysis of Intze tank, what is deflection shape due to hydrostatic pressure then stresses, etc. which are analyzed. This study also relates which calculation gives most economical results.

Index Terms - Water, hydrostatic pressure, types of tank, Intze water tank, reviews, analysis, design criteria as per IS code.

I. Introduction

Overhead tanks and reservoirs are liquid storage containers. These containers are generally used for storing water for irrigation works, human consumption, fire, manufacturing units, rainwater harvesting, and for many purposes. The main purpose of design of tanks are economical, strength, service life, to provide safe portable drinking water after storing for a long time and it also resist special conditions like wind and earthquakes. Water tanks are generally constructed with reinforced concrete or steel and design is based on IS code. Design of tanks depends on the position of tank i.e, above or below, at the ground level. The overhead tanks are generally constructed at certain height from the ground level using columns and braces, for direct distribution of water by gravity. In any case, the
underground tanks are rest underneath the ground level. In the construction of concrete structure for the storage of water and other liquids the imperviousness of concrete is most essential. The permeability of any uniform and thoroughly compacted concrete of given mix proportions is mainly dependent on water cement ratio. The increase in water cement ratio results in increase in the permeability. The decrease in water cement ratio will therefore be desirable to decrease the permeability, but very much reduced water cement ratio may cause compaction difficulties and prove to be harmful also. Design of liquid retaining structure has to be based on the avoidance of cracking in the concrete having regard to its tensile strength. Cracks can be prevented by avoiding the use of thick timber shuttering which prevent the easy escape of heat of hydration from the concrete mass. The risk of cracking can also be minimized by reducing the restraints on free expansion or contraction of the structure. The main reason for life loss is collapse of structures It is said that natural calamities itself never kills people; it is badly constructed structure that kill. Hence it is important to analyse the structure properly for different natural calamities like earthquake, cyclones, floods and typhoons etc. and also should be well studied and calculated under the hydrostatic pressure applied on it.

II. WATER TANK IN GENERAL AND TYPES OF WATER TANK

2.1 Types of Tank:

In recent years, there has been much emphasis on water supply projects all over the world, which are very essential for the social and industrial development of the country. Water tanks can be of different capacity depending upon the requirement of consumption. Based on the location the water tanks are classified into three ways:

A reinforcement concrete tank is a very useful structure which is meant for the storage of water, for swimming bath, sewage sedimentation and for such similar purposes. Reinforced concrete overhead water tanks are used to store and supply safe drinking water.

2.3 Overhead water tank or E.S.R (Elevated Storage Reservoir)

Overhead water tanks of various shapes can be used as service reservoirs, as a balancing tank in water supply schemes and for replenishing the tanks for various purposes. For an efficient water distribution system, overhead water tanks or elevated storage reservoirs are one of the most important components. The basic purpose of elevated water tanks is to secure constant water supply with sufficient flow to wide area by gravity. The height of the elevated tank depends on the area to be covered for the water supply. Wider the area to be served higher will be the required elevation of the tank.

2.4 Intze Water Tank

Intze water tanks are constructed to minimize the project cost because lower dome in this construction resists the horizontal thrust. This type tank is simplest form as compare to the circular tank.

A German hydraulic engineer is given the name tank as Intze. The water tower built in accordance with the Intze precept has a brick shaft on which the water tank sits. the bottom of the tank is fixed with a hoop anchor (Ring Anker) manufactured from iron or metal, so that handiest vertical, no longer horizontal, forces are transmitted to the tower. In this project Intze tank is designed with working stress method and elements of Intze tank is designed with limit state method.

It can be divided into two types based on support:
a) Column rested water tank
b) Shaft rested water tank

2.5 Components and Structural elements of Intze water tank

The various structural elements of an Intze type tank comprises of the following:

1. Top spherical dome
2. Top ring beam
3. Circular side walls
4. Bottom ring beam
5. Conical dome

Figure-1: Typical section showing components of Intze type Water Tank

III. DESIGN CRITERIA OF INTZE TANK

The design of the tank as per IS code will involve the following:

1) The top dome: At top, usually 100 mm to 150 mm thick slab with reinforcement along the meridians and latitudes. The rise for dome is usually $1 / 5$ th of the span.
2) Ring beam supporting the dome: The ring beam is necessary to resist the horizontal component of the thrust of the dome. The ring beam will be designed for the hoop tension induced.
3) Cylindrical walls: This should be designed for hoop tension caused due to horizontal water pressure.
4) Ring beam at the junction of the cylindrical walls and the conical wall: This ring beam is provided to resist the horizontal component of the reaction of the conical wall on the cylindrical wall. The ring beam will be designed for the induced hoop tension.
5) Conical slab: This will be designed for hoop tension due to water pressure. The slab will also be designed as a slab spanning between the ring beam at top and the ring girder at bottom.
6) Floor of the tank: The floor may be circular or domed. This slab is supported on the ring girder.
7) The ring girder: This will be designed to supportthe tank and its contents. The girder will be supported on columns and should be designed for resulting bending moment and Torsion.
8) Columns: These are to be designed for the total load transferred to them. The columns will bebraced at intervals and have to be designed for wind pressure or seismic loads whichever govern.
9) Foundations: A combined footing is usuallyprovided for all supporting columns. When this is done, it is usual to make the foundation consisting of a ring girder and a circular slab.

IV. DESIGN \& ANALYSIS OF INTZE TANK BY MANUAL CALCULATION

4.1 DIMENSION OF TANK

Steel $=\mathrm{Fe} 415$ Concrete grade $=$ M30

Diameter of tank (D) $=15 \mathrm{~m}$
Diameter of lower Ring Beam (D0) $=15 \times 0.6=9 \mathrm{~m}$
Rise of top dome $(\mathrm{h} 1)=2.5 \mathrm{~m}$
Rise of bottom dome $(\mathrm{h} 2)=1.5 \mathrm{~m}$
Height of conical dome (h0) $=2 \mathrm{~m}$
Height of cylindrical portion $=\frac{\pi}{4} \times D^{2} \times h+\frac{\pi}{12} \times h 0\left(D^{2}+D 0^{2}+D \times D 0\right)-\frac{\pi}{3} \times h_{2}^{2} \times\left(3 R_{2}-h_{2}\right)$

Where, $\mathrm{R}_{2}=\frac{\left(\frac{\mathrm{D}}{2}\right)^{2}+\mathrm{h}^{2}}{2 \times \mathrm{h}}=\frac{\left(\frac{15}{2}\right)^{2}+1.5^{2}}{2 \times 1.5}=7.25$
$900=\left(\frac{\pi}{4} \times 15^{2} \times h\right)+\frac{\pi}{12} \times 2 \times\left(15^{2}+9^{2}+15 \times 9\right)-\frac{\pi}{3} \times 1.5^{2} \times(3 \times 7.25-1.5)$
$\mathrm{h}=4.05 \mathrm{~m}$
Say, $\mathrm{h}=4.50 \mathrm{~m}$
As per calculated dimensions capacity of tank $=900 \mathbf{C u m}=900 \times 100=9,00,000$ liters $=\mathbf{9 0} \mathbf{K L}$

Figure 4.1 : Dimension of water tank

4.2 DESIGN OF TOP DOME

Provide a thickness of 150 mm for the roof dome
Let 2θ be the angle subtended by the dome of its center
$\therefore \operatorname{Sin} \theta=\frac{\mathrm{d}}{2 \mathrm{R}_{1}} \quad$, Where, $\mathrm{R}_{1}=\frac{\left(\frac{15}{2}\right)^{2}+2.5^{2}}{2 \times 2.5}=12.5 \mathrm{~m}$
$\theta=\operatorname{Sin}^{-1}\left(\frac{15}{2 \times 12.5}\right)$
$\theta=36.87^{0}$
Figure 4.2: Details rise and angle of top dome

4.2.1 LOADS

a) Dead load $=0.15 \times$ Density of concrete \qquad
Dead load $=0.15 \times 25000$ T (Density of Concrete $=25 \mathrm{kN} / \mathrm{m})$

$$
=3750 \mathrm{~N} / \mathrm{m} 2
$$

b) Live load of dome $=0.75-0.52 \mathrm{y} 2$ (From Table 2, IS: 875 part - 2)
$y=\frac{h}{D}=\frac{2.5}{15}=0.75-0.52 \times\left(\frac{2.5}{15}\right)^{2}=0.735 \mathrm{KN} / \mathrm{m} 2=735 \mathrm{~N} / \mathrm{m} 2$

Total load $(\mathrm{w})=3750+735=4485 \mathrm{~N} / \mathrm{m} 2$

4.2.2 HOOP STRESS AT THE LEVEL OF SPRINGING

$\mathrm{f}=\frac{\mathrm{wR} 1}{\mathrm{t}}\left(\operatorname{Cos} \theta-\frac{1}{1+\operatorname{Cos} \theta}\right)=\frac{4485 \times 12.5}{0.25}\left(\operatorname{Cos} 36.87^{\circ}-\frac{1}{1+\operatorname{Cos} 36.87^{\circ}}\right)=91360.5 \mathrm{~N} / \mathrm{m}^{2}$
$=0.091 \mathrm{~N} / \mathrm{mm}^{2}$

4.2.3 HOOP STRESS AT THE CROWN

i.e., at $\theta=0^{\circ}$
$\mathrm{f}=\frac{\mathrm{w} \mathrm{R1}}{\mathrm{t}}\left(1-\frac{1}{1+1}\right)=\frac{4485 \times 12.5}{0.25} \times 0.5=186875 \mathrm{~N} / \mathrm{m}^{2}=0.18 \mathrm{~N} / \mathrm{mm}^{2}$
Meridional thrust at the level of the springing, per meter run:
$\mathrm{T}_{1}=\frac{\mathrm{wR}}{1+\operatorname{Cos} \theta}=\frac{4485 \times 12.5}{1+\operatorname{Cos} 36.87^{\circ}}=31145 \mathrm{~N} / \mathrm{m}$
\therefore Meridional Stress $=\frac{31145}{150 \times 1000}=0.21 \mathrm{~N} / \mathrm{mm}^{2}$
These stresses are very small. Provide nominal reinforcement
\therefore Provide nominal reinforcement (0.3%)
\therefore Ast $=\frac{0.30}{100} \times 1000 \times 150=450 \mathrm{~mm} 2$
\therefore Provide $8 \mathrm{~mm} \phi @ 110 \mathrm{~mm} \mathrm{c} / \mathrm{c}$

4.3 RING BEAM AT TOP

Horizontal component of T1 $=\mathrm{T} 1 \operatorname{Cos} \theta=31145 \times \operatorname{Cos} 36.870=24915 \mathrm{~N}$
Hoop tension in the ring beam $=24915 \times \frac{15}{2}=186862 \mathrm{~N}$
\therefore Area of steel required for hoop tension $=\frac{186862}{150}=1245 \mathrm{~mm} 2$
Provide 6 bars 18 mm diameter ($1526 \mathrm{~mm}^{2}$)

4.3.1 SIZE OF THE RING BEAM

Let the area of the ring beam section $=\mathrm{Amm}^{2}$

Equivalent concrete area $=\mathrm{A}+(\mathrm{m}-1)$ Ast
$\sigma_{c t}=\frac{\mathrm{T}}{\mathrm{A}+(\mathrm{m}-1) \mathrm{Ast}} \Rightarrow \mathrm{A}+(\mathrm{m}-1) \mathrm{Ast}=\mathrm{A}+(13.33-1) \times 1526=\mathrm{A}+18815 \mathrm{~mm} 2$
Limiting tensile stress on the equivalent concrete area to $1.2 \mathrm{~N} / \mathrm{mm} 2$
$\sigma_{c t}=\frac{\mathrm{T}}{\mathrm{A}+(\mathrm{m}-1) \mathrm{Ast}}=\frac{186862}{\mathrm{~A}+18815}=1.2 \Rightarrow \mathrm{~A}=136903 \mathrm{~mm} 2$
Provide $350 \mathrm{~mm} \times 400 \mathrm{~mm}$ section

Shear reinforcement

Provide $8 \varphi-2$ legged stirrups IS : $456-2000, \mathrm{Cl}-26$.5.1.6

1) $0.7 \mathrm{D}+0.75 \times 400=300$;
(2) 300 mm , and (3) $S_{v}=\frac{0.87 \mathrm{x} \mathrm{f} \times \text { Asv }}{0.4 \mathrm{x} \mathrm{b}}$

Asv $=2 \times \frac{\pi}{4} \times 8^{2}=100 \mathrm{~mm}^{2}$
$\therefore S_{V}=\frac{0.87 \times 415 \times 100}{0.4 \times 350}=257.89 \mathrm{~mm}$
Provide, $\mathrm{S}_{\mathrm{v}}=250 \mathrm{~mm}$
\therefore Provide $8 \varphi-2$ legged vertical stirrups @ $250 \mathrm{~mm} \mathrm{C} / \mathrm{C}$

Figure 4.3: Details of top ring beam reinforcement

4.4 CYLINDRICAL WALL

Pressure intensity at the bottom of cylindrical wall $=4 \times 10000=40000 \mathrm{~N} / \mathrm{m} 2$
Consider bottom strip of the wall as 1 m
Hoop tension $=\frac{P d}{2}=40,000 \times \frac{15}{2}=30,00,000 \mathrm{~N}$
Ast $=\frac{3000000}{150}=2000 \mathrm{~mm}^{2}$
Spacing of 12 mm diameter bars
Spacing $=\frac{\frac{\pi}{4} \times 12^{2} \times 1000}{2000}=56 \mathrm{~mm}$
Provide $12 \mathrm{~mm} \varphi$ bars @ 110 mm centers near each face
Thickness of wall, $\mathrm{Ct}=\frac{T}{1000 t+(m-1) A \mathrm{st}} \mathrm{N} / \mathrm{mm}^{2}<1.2$
$\mathrm{T}=\frac{Y w \times h \times D}{2}=\frac{10 \times 4.5 \times 15}{2}=337.5 \mathrm{KN}=337500 \mathrm{~N}$
$\therefore \mathrm{A}_{\mathrm{st}}=\frac{\pi}{4} \times 12^{2} \times 110=1028 \mathrm{~mm}^{2}$
$=\frac{337500}{1000 \times t(13.33-1) \times 1028}<1.2 \mathrm{~N} / \mathrm{mm}^{2}, \therefore 268.57<\mathrm{t}, \therefore$ Provide $\mathrm{t}=300 \mathrm{~mm}$

Thickness of the wall may be kept as 300 mm .
Distributions steel $=\frac{0.3}{100} \times(300 \times 1000)=900 \mathrm{~mm}^{2}$
Specing of $8 \mathrm{~mm} \emptyset$ bars $=\frac{50 \times 1000}{900}=55 \mathrm{~mm}$
Provide $8 \mathrm{~mm} \emptyset$ bars @ 100 mm centers near each face.
Check for compressive stress at the bottom of the cylindrical wall.
Vertical component of $\mathrm{T}_{1}=\mathrm{V}_{1}=\mathrm{T}_{1} \sin \theta \Rightarrow 31145 \times \sin 36.87^{\circ} \Rightarrow 18687 \mathrm{~N} / \mathrm{m}$
Weight of the wall $=0.3 \times 4.5 \times 25000=33750 \mathrm{~N} / \mathrm{m}$.
Weight of ring beam $=0.35 \times 0.4 \times 25000=3500 \mathrm{~N} / \mathrm{m}$.
$\mathrm{V} 2=$ Total vertical load per ' $\mathrm{m} `=18687+33750+3500=55937 \mathrm{~N} / \mathrm{m}$.
Compressive stress $=\frac{55937}{300 \times 1000}=0.18 \mathrm{~N} / \mathrm{mm}^{2}$

Figure 4.4: Showing moments \& loads acting on point B bottom of cylindrical wall

This stress being low profile nominal vertical stress at 0.3% gross area
\therefore Vertical steel $=\frac{0.3}{100}(300 \times 1000)=900 \mathrm{~mm}^{2}$
Spacing of $8 \mathrm{~mm} \varphi$ bars $=\frac{\frac{\pi}{4} \times 8^{2} \times 1000}{900}$
Provide of $8 \mathrm{~mm} \varphi$ bars @ $100 \mathrm{~mm} \mathrm{c} / \mathrm{c}$ near each face

4.5 RING BEAM AT BOTTOM (B) :-

Let T_{2} be the thrust per meter run exerted by the conical slab at the junction B.
Resolving vertically at $\mathrm{B}, \mathrm{T}_{2} \operatorname{Sin} \alpha=\mathrm{V}_{2}=55937 \mathrm{~N} / \mathrm{m}$.
$\tan \alpha=\frac{2}{3}=0.67, \alpha=33.69^{\circ}, \mathrm{T}_{2}=55937 \mathrm{~N} / \mathrm{m}$
Resolving horizontally at $\mathrm{B}, \mathrm{H}_{2}=\mathrm{T}_{2} \cos \alpha=\mathrm{V}_{2} \cot \alpha=\frac{55937}{0.67}=83488 \mathrm{~N} / \mathrm{m}$
This horizontal load H_{2} will produce a hoop tension in ring beam B
Hoop tension due to $\mathrm{H}_{2}=\mathrm{H}_{2} \times \frac{d}{2}=83488 \times \frac{15}{2}=626160 \mathrm{~N}$
Let the ring beam be 1000 mm deep.
Water pressure on the ring beam $=1000 \times 4.5 \times \frac{900}{1000}=40500 \mathrm{~N} / \mathrm{m}$
Hoop tension due to water pressure $=40500 \times \frac{15}{2}=303750 \mathrm{~N}$
\therefore Total hoop tension $=626160+303750=929910 \mathrm{~N}$
\therefore Steel for hoop tension $=\frac{929910}{150}=6199 \mathrm{~mm}^{2}$

Provide $24 \mathrm{~mm} \varphi$ bars, number of bars required $=6199 /\left(\pi / 4 \times 24^{2}\right)=13.70$ bars

Provide 14 bars of 24 mm diameter.

Let the area of the ring beam section be A .

Equivalent concrete area $=\mathrm{A}+(\mathrm{m}-1) \times$ Ast
$=\mathrm{A}+(13.33-1) \times 6333 \Rightarrow \mathrm{~A}+78085$

Limiting the tensile stress on the equivalent concrete area to $1.2 \mathrm{~N} / \mathrm{mm}^{2}$
$=\frac{929910}{A+78085}=1.2 \Rightarrow \mathrm{~A}=696840 \mathrm{~mm}^{2}$

Provide, $750 \mathrm{~mm} \times 950 \mathrm{~mm}$ section

Figure 4.5: Reinforcement details of bottom ring beam

4.6 DESIGN OF CONICAL SLAB

The Conical slab should be designed for
a) Hoop tension
b) Bending as it spans on a sloping slab from the ring beam at' B ' at the ring girder at ' C '.

4.6.1 DESIGN FOR HOOP TENSION

The hoop tension on the conical slab is given by $=\frac{\mathrm{W}_{\mathrm{w}}+\mathrm{W}_{\mathrm{S}}}{2 \pi}+\frac{\mathrm{W}_{\mathrm{w}}}{2 \pi} \tan \alpha$
Where,
$\mathrm{W}_{\mathrm{w}}=$ weight of water resting on the conical slab.
$\mathrm{W}_{\mathrm{s}}=$ weight of the conical slab.
$\alpha=$ inclination of the conical slab with the horizontal.

Figure 4.6: Design of Dome Section

Area of water section standing on the conical slab $=\frac{3}{2}(4.5+6.5)=16.5 \mathrm{~m}^{2}$
$\overline{\mathrm{x}}=\frac{(4.5 \times 3)+\left(\frac{3 \times 2}{3}\right)}{16.5}=0.94 \mathrm{~m}$
\therefore Weight of water resting on the conical slab, $W_{w}=\gamma \times \mathrm{A} \times 2 \pi \times\left(\frac{9}{2}+\overline{\mathrm{X}}\right)$

$$
=1000 \times 16.5 \times 2 \pi \times\left(\frac{9}{2}+0.94\right)=5639787 \mathrm{~N}
$$

Length of sloping slab $=\sqrt{3^{2}}+2^{2}=3.6055 \mathrm{~m}$
Thickness of sloping slab $=300 \mathrm{~mm}$.
\therefore Weight of the conical slab Ws $=3.6055 \times 0.3 \times 25000 \times 2 \pi \times\left(\frac{15}{2}+\frac{9}{2}\right) / 2=1019431 \mathrm{~N}$
\therefore Hoop tension $=\frac{5639787+1019431}{2 \pi}+\frac{5639787}{2 \pi} \times \frac{2}{3}=1658247 \mathrm{~N}$
\therefore Hoop steel on the entire section $=\frac{1658247}{150}=11054 \mathrm{~mm}^{2}$
Provide 35 bars of 20 mm diameter
These bars may be distributed near both the faces of conical slab.

4.6.2 DESIGN FOR BENDING MOMENT

Load per meter width of the conical slab $=\frac{W_{W}+W_{S}}{2 \pi \times \text { mean radian }}=\frac{5639787+1019431}{2 \pi \times 6}=176641 \mathrm{~N}$
Maximum bending moment $=\frac{\mathrm{wl}}{8}=\frac{176641 \times 3}{8}=66240 \mathrm{Nm}$.
Axial compression $\mathrm{T}_{2}=\frac{\mathrm{V}_{2}}{\operatorname{Sin} \alpha}=\frac{55937}{\sin 33.69^{\circ}}=100842 \mathrm{~N}$
Providing 20 mm diameter bar at clear covers of spacing 25 mm
Effective depth $=300-25-10=265 \mathrm{~mm}$.

Distance between centre of section and centre of steel
$\overline{\mathrm{x}}=\mathrm{d}-\frac{\mathrm{t}}{2}=265-150=115 \mathrm{~mm}$
Resultant bending moment $=M+T 2 x==66240 \mathrm{n} \times 103+(100842 \times 115)=77836830 \mathrm{Nmm}$
$A_{s t}=\frac{M}{\sigma_{s t} \times j \times d}=\frac{77836830}{190 \times 0.86 \times 265}=1797 \mathrm{~mm}^{2}$
Spacing of 20 mm dia bar $=\frac{\frac{\pi}{4} \times 20^{2} \times 1000}{1797}=174 \mathrm{~mm}$
provide $20 \mathrm{~mm} \varphi$ bars @ $170 \mathrm{~mm} \mathrm{c} / \mathrm{c}$

4.7 THE BOTTOM DOME

Span of the dome $=9 \mathrm{~m}$, Rise of the dome $=1.5 \mathrm{~m}$,
Let R be the radius of dome
$\mathrm{R}=\frac{\left(\frac{\mathrm{D}}{2}\right)^{2}+\mathrm{h}^{2}}{2 \times \mathrm{h}}=\frac{\left(\frac{9}{2}\right)^{2}+1.5^{2}}{2 \times 1.5}=7.5 \mathrm{~m}$
Let 2θ be the angle subtended by the dome
$\operatorname{Sin} \theta=\frac{\mathrm{D} / 2}{\mathrm{R}}=0.6 ; \theta=36.86^{\circ}$
Figure 4.7: Details of bottom dome
Thickness of dome $=300 \mathrm{~mm}$

4.7.1 LOADS

Dead load $=25000 \times 0.3=7500 \mathrm{~N} / \mathrm{m}^{2}$
Weight of water resting on the dome (when tank is full)
$=\gamma_{\mathrm{w}}\left[\frac{\pi}{4} \times \mathrm{d}^{2} \times \mathrm{h}-\frac{\pi \mathrm{xh}_{\mathrm{c}}}{3}\right]\left(3 \mathrm{R}-\mathrm{h}_{\mathrm{c}}\right)=1000\left[\frac{\pi}{4} \times 9^{2} \times 6.5-\frac{\pi \times 1.5}{3}\right](3 \times 7.5-1.5)=3805254 \mathrm{~N}$
Area of dome surface $=2 \pi \times \mathrm{R} \times \mathrm{h}=2 \times \pi \times 7.5 \times 1.25=70.68 \mathrm{~m}^{2}$
Load intensity due to weight of water $=\frac{3805254}{70.68}=53838 \mathrm{~N} / \mathrm{m}^{2}$
Total load intensity $=53838+7500=661338 \mathrm{~N} / \mathrm{m}^{2}$.
Meridional thrust $=\frac{\mathrm{WR}}{1+\operatorname{COS} \theta}=\frac{61338 \times 7.5}{1+\cos 36.86^{\circ}}=255560 \mathrm{~N} / \mathrm{m}$
Meridional compressive stress $=\frac{255560}{300 \times 1000}=0.85 \mathrm{~N} / \mathrm{mm}^{2}$
Hoop stress $=\frac{\mathrm{WR}}{\mathrm{t}}\left(\cos \theta-\frac{1}{1+\cos \theta}\right)=\frac{61338 \times 7.5}{0.3}\left(\cos 36.86^{\circ}-\frac{1}{1+\cos 36.86^{\circ}}\right)=0.375 \mathrm{~N} / \mathrm{mm}^{2}$
Hoop stress at the crown, i.e at $\theta=0^{\circ}$
Maximum hoop stress $=\frac{\mathrm{WR}}{\mathrm{t}}\left(\cos \theta-\frac{1}{1+\cos \theta}\right)=\frac{61338 \times 7.5}{0.3}\left(1-\frac{1}{2}\right)=0.767 \mathrm{~N} / \mathrm{mm}^{2}$
These stresses are low and hence provide nominal 0.3% steel.
\therefore Provide 8 mm bars @ 100 mm spacing

4.8 CIRCULAR GIRDER

The total load acting on the circular girder will be from the following loads: -
Weight of water, $\mathrm{w} 1=$ weight of water on (conical slab + dome)

$$
\begin{aligned}
& =5639787+3805254 \\
& =9445041 \mathrm{~N}
\end{aligned}
$$

Weight of top dome and side wall, $\mathrm{w} 2=\mathrm{v} 2 \times 2 \pi \times \mathrm{D} / 2$

$$
=55397 \times 2 \pi \times 15 / 2=2610522 \mathrm{~N}
$$

Weight of ring beam at B, w3 $=0.75 \times 0.95 \times 25000 \times 2 \pi \times 4.5=503636 \mathrm{~N}$
Weight of conical wall, $\mathrm{w} 4=1019431 \mathrm{~N}$
Weight of lower dome, $\mathrm{w} 5=25000 \times 0.3 \times 70.68=530100 \mathrm{~N}$
Total load, $\mathrm{W}=\mathrm{w} 1+\mathrm{w} 2+\mathrm{w} 3+\mathrm{w} 4+\mathrm{w} 5=14108730 \mathrm{~N}$
Providing 8 no.s of columns: -
Max. - ve bending moment $=0.0083 \mathrm{Wr}=0.0083 \times 14108730 \times 4.5=526961 \mathrm{Nm}$
Max. + ve bending moment $=0.00416 \mathrm{Wr}=0.00416 \times 14108730 \times 4.5=264115 \mathrm{Nm}$
Max. torsion $=0.0006 \mathrm{Wr}=0.0006 \times 14108730 \times 4.5=38093 \mathrm{Nm}$
Shear force at support $=\frac{\mathrm{W}}{2 \times \text { Number of columns }}=\frac{14108730}{2 \times 8}=881796 \mathrm{~N}$

4.8.1 DESING AT SUPPORT SECTION

Equating the moment of resistance to the B.M at support

$$
\begin{aligned}
& 0.913 \mathrm{bd} 2=\operatorname{Mmax} \\
& =0.913 \times 750 \times \mathrm{d} 2=526961 \times 1000
\end{aligned}
$$

$\therefore \mathrm{d}=880 \mathrm{~mm}$ Overall depth of beam $=905 \mathrm{~mm}$
Actual effective depth $=880 \mathrm{~mm} \quad[(905-25) \rightarrow 25 \mathrm{~mm}=$ clear cover]
Equivalent shear force $=\mathrm{Se}=\mathrm{S} \times 1.6 \times \frac{T}{b} \Rightarrow=881796+1.6 \times \frac{38093 \times 10^{3}}{750}=963061 \mathrm{~N}$
Equivalent nominal shear stress $\Rightarrow \tau_{v c}=\frac{\mathrm{S}_{\mathrm{e}}}{\mathrm{bd}}=\frac{963061}{750 \times 880}=1.46 \mathrm{~N} / \mathrm{mm}^{2}$
Maximum shear stress $\tau_{\text {max }}>\tau_{v}$
$\tau_{\max }=2.2 \mathrm{~N} / \mathrm{mm}^{2}$ (for M30 concrete)
\therefore Hence safe.
Provide longitudinal and transverse reinforcement according to - B - 6.4 (IS: 456 - 2000)

LONGITUDINAL REINFORCEMENT

$\mathrm{Me}=\mathrm{M}+\mathrm{M} 1$
$\mathrm{M}_{1}=\frac{\mathrm{T}\left(1+\frac{\mathrm{D}}{\mathrm{b}}\right)}{1.7}=\frac{38093 \times 10^{3}\left(1+\frac{905}{750}\right)}{1.7}=49446207 \mathrm{Nmm}$
Ast $=\frac{\mathrm{M}}{\sigma \text { st x j d }}=\frac{576907207}{230 \times 0.9 \times 880}=3164 \mathrm{~mm}^{2}$
\therefore Provide 12 bars of $20 \mathrm{~mm} \emptyset\left(3770 \mathrm{~mm}^{2}\right)$

Transverse reinforcement

Asv $=\frac{T \times S_{v}}{b_{1} \times d_{1} \times \sigma_{s v}}+\frac{V \times S_{v}}{2 S \times d_{1} \times \sigma_{\text {sv }}}$
Distance between centers of corner bars parallel to the width; $\mathrm{b} 1=750-2 \times 40=670 \mathrm{~mm}$
Distance between centers of corner bars parallel to the depth; d1 $=905-2 \times 40=825 \mathrm{~mm}$
Area section of stirrups $\Rightarrow \mathrm{Asv}=\left[\frac{38093 \times 10^{3}}{670 \times 825 \times 230}+\frac{963061}{2.5 \times 825 \times 230}\right] \times \mathrm{S}_{\mathrm{V}}$
\therefore Provide 4 legged 10 mm stirrups.
Ast $=4 \times \frac{\pi}{4} \times 10^{2}=316 \mathrm{~mm}^{2}$
$\mathrm{S}_{\mathrm{V}}=136 \mathrm{~mm}$; Provide, $\mathrm{S}_{\mathrm{V}}=100 \mathrm{~mm}$
Transverse reinforcement shall not be less than $\Rightarrow \frac{\left(\tau_{\mathrm{vc}} \times \tau_{\mathrm{c}}\right) \times \mathrm{b} \mathrm{x} \mathrm{S}_{\mathrm{V}}}{\sigma_{\mathrm{SV}}} \Rightarrow \frac{1.46-0.3 \times 750}{230} \times \mathrm{S}_{\mathrm{V}}=315$
$\mathrm{S}_{\mathrm{V}}=83 \mathrm{~mm}$
Provide 80 mm spacing
Steel for sagging moment
Ast $=\frac{\mathrm{M}}{\sigma \text { st } \times \mathrm{jxd}}=\frac{264115 \times 10^{3}}{230 \times 0.90 \times 880}=1451.55 \mathrm{~mm}^{2}$
Provide 6 bars of 18 mm diameter \Rightarrow Ast $=1527 \mathrm{~mm} 2$

Figure 4.8: Section of Beam

Hoop stress

$\mathrm{Tc}=$ Thrust exerted by the conical slab on the girder.
$\mathrm{Tc} \sin \alpha \times 2 \pi \mathrm{r}=\mathrm{Ww}+\mathrm{Ws}+$ weight of cylindrical wall and upper dome. $\mathrm{Tc} \sin \alpha \times 2 \pi \mathrm{r}=5639787+1019431+2610522$
Tc $\sin 33.690 \times 2 \pi 4.5=9269740=591041 \mathrm{~N}$
Horizontal component of $\mathrm{Tc}=591041 \times \cos 33.69^{\circ}, \mathrm{H} 1=491777 \mathrm{~N}$
Horizontal component due to dome $T^{\prime}=255560 \times \cos 36.860 \Rightarrow \mathrm{H} 2=204475 \mathrm{~N}$
\therefore Net Horizontal force $=\mathrm{H} 1-\mathrm{H} 2=287302 \mathrm{~N}$.
\therefore Hoop force $=287302 \times 4.5=1292859 \mathrm{~N}$
Hoop compressive stress $=\frac{1292859}{750 \times 905}=1.90 \mathrm{~N} / \mathrm{mm}^{2}$

4.9 COLUMNS

Columns should be designed for direct loads coming upon them and for Bending moments caused by wind load.
Vertical load on one column at top $=\frac{14108730}{8}=1763592 \mathrm{~N}$
Let α be the inclination of the column with the vertical.
$\operatorname{Tan} \alpha=\frac{1}{12}, \alpha=4.76^{\circ} ; \sin \alpha=0.83, \cos \alpha=0.99$
Actual length of column $=1 \sec \alpha=12.04 \mathrm{~m}$.

Weight of column $=\frac{\pi}{4} \times 0.5^{2} \times 12.04 \times 25000=59102$
Total vertical load $=1763592+59102 \mathrm{~N}=1822694 \mathrm{~N}$
\therefore Corresponding axis load $=\frac{1822694}{0.995}=1822694 \mathrm{~N}$
Weight of water in tank $=9445041$
Weight of water transmitted to one column $=\frac{9445041}{8}=1180631 \mathrm{~N}$
Vertical load on one column when the tank is empty $=1822694-1180631=642064 \mathrm{~N}$
\therefore Corresponding axial load $=\frac{642064}{0.996}=644643 \mathrm{~N}$
Ignoring wind load effect if the steel requirement is Asc
Then, $\mathrm{C}(\mathrm{A}-\mathrm{Asc})+\mathrm{Asc}=1830014 \Rightarrow 8\left(\frac{\pi}{4} \mathrm{xAsc}\right)+190 \times$ Asc $=1830014$
Hence, Asc $=1424 \mathrm{~mm}^{2}$
Minimum Requirement of steel $=0.8 \%=\frac{0.8}{100} \times\left(\frac{\pi}{4} \times 500^{2}\right)=1571 \mathrm{~mm}^{2}$
Provide 7 bars of 20 mm diameter $=2199 \mathrm{~mm} 2$
(More steel has been subjected since the column is subjected to bending moment caused by wind load)

4.10 STAGING AND GRAVITY LOAD

Height of column $=12.04 \mathrm{~m}$
No. of column $=8$, Dia. of column $=500 \mathrm{~mm}$
No. of braces $=4$, Size of braces $=300 \times 500 \mathrm{~mm}$

4.10.1 GRAVITY LOADS

a) from container

When full $=14108730 \mathrm{~N}$
When empty $=4663689 \mathrm{~N}$
b) Weight of column $=8 \times \frac{\pi}{4} \times 0.5^{2} \times 12.04 \times 25 \times 1000=472809.7 \mathrm{~N}$ or 472.80 kN
c) Weight of braces

Clear length of braces between two column $=2 \times \frac{10.5}{2} \mathrm{x} \sin 22.5^{\circ}-0.5=3.518 \mathrm{~m}$
Weight of braces $=3.518 \times 0.3 \times 0.5 \times 25 \times 4 \times 8=422160 \mathrm{~N}=422.16 \mathrm{kN}$
Total weight of staging $=472809.7+422160=894969.7 \mathrm{~N}=894.96 \mathrm{kN}$

4.11 LATERAL FORCES

4.11.1 SEISMIC FORCES

Consider 1.5 percent longitudinal steel in column
Equivalent area of column $=\frac{\pi}{4} \times 500^{2} \times(1+(13.11-1) \times 0.015)=232665 \mathrm{~mm}^{2}$
Equivalent area of column $=\sqrt{\frac{232665}{\frac{\pi}{4}}}=544.3 \mathrm{~mm}$, Say 550 mm
$\operatorname{Ir}=\frac{\pi}{64} \times 5502=4.4918 \times 10^{9} \mathrm{~mm}^{4}$
$\mathrm{E}=500 \sqrt{30}=2.7386 \times 10^{4} \mathrm{MPa}$

Stiffness of the staging

$\mathrm{K}=\frac{n(12 E I)}{\sum h i^{2}}=\frac{8 \times 12 \times 2.7386 \times 10^{2} \times 4.4918 \times 10^{9}}{4 \times 3.01^{3} \times 10^{9}}=1.0826 \times 10^{5} \mathrm{~N} / \mathrm{mm}$

Case - I : When tank is full

$W=14108730+\frac{894969.7}{3}=14407054 \mathrm{~N}$
$\mathrm{T}_{\mathrm{f}}=2 \pi \sqrt{\frac{W f}{g k}}=2 \pi \sqrt{\frac{14407054}{9810 \times 1.0826 \times 10^{5}}}=0.732 \mathrm{sec}$
From fig- 2 of IS: $1893-1984$, for $\mathrm{Tf}=0.732 \mathrm{sec}$ and 5% damping (assumed)
$\frac{S_{a}}{y}=0.13$
$\beta=1$, from table -3 of IS: $1893-1984$
$I=1.5$, from table -4 of IS: $1893-1984$
$\mathrm{F} 0=0.4$, from table -2 of IS: $1893-1984$
$\alpha \mathrm{h}=\beta \mathrm{IF}_{0} \frac{s_{a}}{y}=0.096$
Seismic force $=0.081 \times 14407054=1166977.37 \mathrm{~N}$

Case - 2: When tank is empty

$\mathrm{W}_{\mathrm{f}}=4663689+\frac{894969.7}{3}=4962012 \mathrm{~N}$
$\mathrm{T}_{\mathrm{t}}=2 \pi \sqrt{\frac{W f}{g k}}=2 \pi \sqrt{\frac{4962012}{9810 \times 1.0826 \times 10^{5}}}=0.430 \mathrm{sec}$

From fig- 2 of IS: $1893-1984$, for $\mathrm{Tf}=0.430 \mathrm{sec}$ and 5% damping (assumed)
$\frac{S_{a}}{y}=0.16$
$\alpha_{h}=\beta I F_{\mathrm{o}} \frac{S_{a}}{y}=0.09$
Seismic force $=0.096 \times 4962012=4763254 \mathrm{~N}$
Shear force per column $=\frac{1166971.3}{8}=145871.4 \mathrm{~N}$
Maximum bending moment for the column
$145871.4 \times \frac{3.01}{2}=219536.4 \mathrm{Nm}$

WIND FORCES

Terrain category - 2
Type of structure - class A
Basic wind speed of North - East Indian, $\mathrm{Vb}=50 \mathrm{~m} / \mathrm{sec}$
Design wind speed, $\mathrm{Vz}=\mathrm{Vb} \mathrm{K} 1 \mathrm{~K} 2 \mathrm{~K} 3$
Rise coefficient K1 $=0.9$; from table -1 of IS: $875-1987$ part -3
Terrain height factor $\mathrm{K} 2=1,124$; fr0m table -2 of IS: $875-1987$ part -3
Topography factor, $\mathrm{K} 3=1$; for slope <30, as per cl.5..3.1 of IS : 875-1987 part -3
Design speed,
$\mathrm{Vz}=50 \times 0.9 \times 1.124 \times 1$ $=50.58 \mathrm{~m} / \mathrm{sec}$
Design wind pressure, $\mathrm{Pz}=0.6 \mathrm{~V}=1535 \mathrm{~N} / \mathrm{m}^{2}$
Reduction factor $=0.7$
Now, wind force on the top dome and cylindrical walls
$\left(4.5+\frac{2.5}{2}\right) \times 15.6 \times 1535 \times 0.7=96383 N$
Acting at 16.9 m above the base.

Fig no. 4.9: Analysis of wind force in the column

Wind force on the circular wall $=\left(\frac{15.6+10.5}{2}\right) \times 2 \times 1 \times 1535 \times 0.7=28045 \mathrm{~N}$
Acting at 13.04 m above the base
Wind force on circular girder $=0.905 \times 10.5 \times 1500 \times 0.7=9978 \mathrm{~N}$
Acting at 12.04 m above the base

Wind force on column and braces

$=0.7 \times(5 \times 0.5 \times 12.04+7 \times 10.50) \times 1535=71831 \mathrm{~N}$
Acting at 6.02 m above the base

Total moment of wind pressure about the base
$=(96383 \times 16.9)+(28045 \times 13.04)+(9978 \times 12.04)+(71831 \times 6.02)=2547137 \mathrm{Nm}$
Vertical load on any column due to wind load $=\frac{M \cdot x}{\sum x^{2}} \Rightarrow \sum x^{2}=2 \mathrm{r}^{2}+4\left(\mathrm{rsin}\left(\frac{\pi}{4}\right)\right)^{2}=2 \times 5.5^{2}+4\left(5.5 \sin 45^{\circ}\right)$
Where $\mathrm{r}=$ radius column circle $=5.5 \mathrm{~m} \Rightarrow \sum x^{2}=121 \mathrm{~m} 2$
Maximum wind load force in most leeward and the most windward side $=\frac{2547137 \times 5.5}{121}=115779 \mathrm{~N}$

Maximum wind load force in column marked $5=\frac{2547137 \times 5.5}{125} \times \frac{5.5}{\sqrt{2}}=81868 \mathrm{~N}$
Consider the windward column 1
Vertical load due to load and wind load $=1822694+115779=1938473 \mathrm{~N}$
Corresponding axial load $=\frac{1938473}{0.996}=1946258 \mathrm{~N}$

Since the column are inclined the horizontal component of the axial force caused by wind action reduce the horizontal shear in column.

Horizontal component of axial force caused wind action
$=2 \times 115779 \times 0.0996+4 \times 81868 \times 0.0996 \times \frac{1}{\sqrt{2}}=46127 \mathrm{~N}$
\therefore Actual horizontal force at the base
$=(96383+28045+9978+71831)-46127=160110 \mathrm{~N}$
\therefore Horizontal shear per column $=\frac{160110}{8}=20013.75$
\therefore Maximum bending moment for the column $=20013.75 \times \frac{3.01}{2}=30121 \mathrm{Nm}$
The effect of lateral forces due to seismic load is greater than those due to wind load; therefore seismic forces govern the design of staging.

4.12 ANALYSIS OF THE COLUMN SECTION

Radius of column circle $=0.25 \mathrm{~m}$
Axial force in column due to gravity load tank full $=15003700 \mathrm{~N}$
Overturning moment when tank is full $=145871.4 \times 16.07=2344154 \mathrm{Nm}$
Maximum axial force on the remotest column staging,

When tank is full $=\frac{150037000}{8} \pm \frac{2344154}{\sum(\mathrm{XxX})} \times \mathrm{R}$
Where , $\sum x^{2}=2 \times R^{2}+4\left(R \sin \left(\frac{\pi}{4}\right)\right)^{2}=121 \Rightarrow \frac{150037000}{8} \pm \frac{2344154}{121} \times 5.5=1982015 \mathrm{~N}$
Maximum axial force $=\frac{1982015}{0.996}=1989975 \mathrm{~N}$
Provide 9 bars of 20 mm diameter, and an effective cover of 50 mm .
Area of steel, Ast $=9 \times 314=2828 \mathrm{~mm}^{2}$
Equivalent concrete area $=\frac{\pi}{4} \times 500^{2}+(13.33-1) \times 2828=231219 \mathrm{~mm}^{2}$
Polar moment of inertia of equivalent concrete section $=(\pi \mathrm{d} 4 / 64)+$ Ast $(\mathrm{m}-1) \mathrm{r} 2(\mathrm{n} / 2)$

$$
\begin{aligned}
& =(\pi \times 5004) / 64+2828 \times(13-33-1) \times(250-50) 2 \times(9 / 2) \\
& =9.34 \times 109 \mathrm{~mm} 4
\end{aligned}
$$

Therefore, Equivalent moment of inertia about a diameter $=9.34 \times 109 \mathrm{~mm} 4$
Direct stress in concrete $=\frac{1989975}{231219}=8.61 \mathrm{~N} / \mathrm{mm}^{2}$

Bending stress in concrete $=\frac{219536.4}{9.34 \times 1000000000} \times 1000 \times 250=5.87 \mathrm{~N} / \mathrm{mm}^{2}$
Factored designed load, $\mathrm{Pu}=1.5 \times 1982015=2973022.5 \mathrm{~N}$
$\mathrm{Mu}=1.5 \times 219536.4=329305 \mathrm{Nm}$
Dimensionless parameter for seismic forces,
$\left(\right.$ Pu $/$ fck.D $\left.{ }^{2}\right)=\frac{2973022.50}{30 \times 50 \times 500}=0.369$
$\left(\mathrm{Mu} / \mathrm{fck} . \mathrm{D}^{3}\right)=\frac{329305}{30 \times 500 \times 500 \times 500}=0.088$
From SP: 16, chart-55,
$\mathrm{P} / \mathrm{fck}=0.12 \times 0.4=0.048$

Figure 4.9: Details of column section

Requirement of steel $=\frac{1.44}{100} \times \frac{\pi}{4} \times 500^{2}=2828$
Provide 9 bars of 20 mm diameter at an effective cover of 50 mm .

4.13 ANALYSIS OF THE COLUMN SECTION

Consider ore braces, say the base BC

Fig no. 4.10: Wind pressure acting on brace $A B$

For the condition of maximum B.M. for the brace BC, seismic should act normal to an adjoining brace AB.
Moment in brace $B C=$ moment for the column $\times\left(\sec 45^{\circ}\right)=219536.4 \times \sqrt{2}=310471 \mathrm{Nm}$

Providing $(300 \times 500) \mathrm{mm}$ section and designing as doubly reinforcement beam with equal steel at top and bottom,
Asc $=$ Ast $=\frac{310471 \times 1000}{220 \times 420}=3660 \mathrm{~mm}^{2}$
Provide 6 bars of 20 mm dia. at top and equal amount of steel at bottom.
Shear force for brace $=\frac{\text { B.M.for brace }}{0.5 \times \text { span of brace }}=\frac{310471}{0.5 \times 3.518}=176504 \mathrm{~N}$

Therefore, Nominal shear stress, $\mathrm{tv}=\mathrm{S} / \mathrm{bd}=\frac{176504}{300 \times 460}=1.27 \mathrm{~N} / \mathrm{mm}^{2}<1.8 \mathrm{~N} / \mathrm{mm}^{2}$

Hence the section is adequate with shear reinforcement.
Therefore, provide nominal stirrups; say 4-legged $8 \mathrm{~mm} \varphi$ stirrups @ $160 \mathrm{~mm} \mathrm{c} / \mathrm{c}$.

4.14 DESIGN OF FOUNDATION

Total load on the columns when the tank is full $=1830014 \times 8=14640112 \mathrm{~N}$
Approximate weight of foundation $(10 \%$ of column load $)=1464011.2 \mathrm{~N}$ Total loads $=16104123 \mathrm{~N}$
Safe bearing capacity $=112.815 \mathrm{KN} / \mathrm{m}^{2}$ \qquad (Assumed)

Area of foundation $=\frac{16104123}{112815}=142.75 \mathrm{~m}$

Let us provide 16 m outer dia. and 8 m inner dia. for raft foundation.
Therefore, area of footing $=\frac{\pi}{4}\left(16^{2}-8^{2}\right)=150.80 \mathrm{~m}^{2}$
Therefore, net upward pressure intensity $=\frac{14640112}{150.80}=97085 \mathrm{~N} / \mathrm{m}^{2}=97.085 \mathrm{kN} / \mathrm{m}^{2}<112.815 \mathrm{kN} / \mathrm{m}$

4.14.1 DESIGN OF CIRCULAR GIRDER

Maximum negative B.M. at centre $=0.00416 \times \mathrm{W} \times \mathrm{r}=0.00416 \times 14640112 \times 5.5=334966.5 \mathrm{Nm}$
Maximum positive B.M. at support $=0.0083 \times \mathrm{W} \times \mathrm{r}=0.0083 \times 14640112 \times 5.5=668321.5 \mathrm{Nm}$
Maximum torsion $=0.0006 \times \mathrm{W} \times \mathrm{r}=0.0006 \times 14640112 \times 5.5=4831.2 \mathrm{Nm}$
Maximum S.F. at support $=\frac{14640112}{2 \times 8}=915007 \mathrm{~N}$

4.14.2 DESIGN AT SUPPORT SECTION

Moment of resistance $=$ Maximum bending moment at support
$0.913 \mathrm{bd} 2=668321.5 \Rightarrow \mathrm{bd} 2=732006 \times 1000$

So, $b=750 \mathrm{~mm}$ and $\mathrm{d}=1000 \mathrm{~mm} . \Rightarrow$ Effective depth $=1000-60=940 \mathrm{~mm}$.
Effective Shear Force, $\mathrm{S}_{\mathrm{e}}=\mathrm{S}+1.6 \frac{T}{b}=915007+1.6 \times \frac{48312 \times 1000}{750}=1018072.6 \mathrm{~N}$
Equivalent nominal shear stress, $q_{v e}=\frac{S_{e}}{b d}=\frac{1018072.6}{750 \times 940}=1.44 \mathrm{~N} / \mathrm{mm}^{2}$
For M30 concrete, tc $\max =2.2 \mathrm{~N} / \mathrm{m} 2$
(from IS 456:2000 table-24)

LONGITUDINAL REINFORCEMENT

Equivalent B.M. $=\mathrm{Me} 1=\mathrm{M}+\mathrm{Mt}$
$M_{t}=T \times \frac{\left[1+\frac{D}{d}\right.}{1.7}=\frac{48312000}{1.7} \times\left[1+\frac{1000}{750}\right]=66310588 \mathrm{Nm}$
$\mathrm{Me}_{1}=668321500+66310588=734632088 \mathrm{Nm}$
$\mathrm{A}_{\mathrm{st}}=\frac{734632088}{230 \times 0.9 \times 940}=3775 \mathrm{~mm}^{2}$

So, provide 14 bars of $20 \mathrm{~mm} \emptyset\left(4400 \mathrm{~mm}^{2}\right)$

Transverse Reinforcement

Distance between centers of corner bars parallel to the width $=\mathrm{b} 1=750-(2 \times 40)=670 \mathrm{~mm}$
Distance between centers of corner bars parallel to the depth $=\mathrm{d} 1=1000-(2 \times 40)=920 \mathrm{~mm}$
Area of section of stirrups $=\mathrm{A}_{\mathrm{W}}=\frac{T P}{b_{1} \times d_{1} \times t w}+\frac{S P}{2.5 \times d_{1} \times t w}$
Providing 4-legged $10 \mathrm{~mm} \emptyset$ stirrups, Aw $=4 \times 79=316 \mathrm{~mm}^{2}$
$316=\left[\frac{48312000}{670 \times 920 \times 230}+\frac{915007}{2.5 \times 920 \times 230}\right] \times \mathrm{P}$
$316=[0.34+1.73] \mathrm{P}$
$P=152.6 \mathrm{~mm}$. Say $120 \mathrm{~mm} \mathrm{c} / \mathrm{c}$
Steel for hagging moment $=\frac{334966.5 \times 1000}{230 \times 0.9 \times 940}=1722 \mathrm{~mm} 2$
Provide 6 bars of $20 \mathrm{~mm} \emptyset(1885 \mathrm{~mm} 2)$.

4.14.3 DESIGN OF BOTTOM SLAB

Cantilever projection beyond the face of the beam $=\frac{1.5-0.5}{2}=0.5 \mathrm{~m}$
Maximum bending moment for 1 m wide strip $=174.225 \times \frac{0.5 \times 0.5}{2}=21778.125 \mathrm{Nm}$
Equating the M.R. to the beam $0.913 \times 1000 \times \mathrm{d} 2=21778125 \Rightarrow \mathrm{~d}=154 \mathrm{~mm}$
Let us provide $\mathrm{d}=200 \mathrm{~mm}$.
So, effective depth $=200-40=160 \mathrm{~mm}$ \qquad
$\mathrm{A}_{\mathrm{st}}=\frac{21778125}{230 \times 0.90 \times 160}=658 \mathrm{~mm}^{2}$
Spacing of 12 mm diameter bars $=\frac{113 \times 1000}{658}=172 \mathrm{~mm}$
Say 150 mm c/c

Distribution of steel $=\frac{0.12}{100} 200 \times 1000=240 \mathrm{~mm}^{2} ;$ Provide $8 \mathrm{~mm} \emptyset$ bars @ 200 m centres.

Check for sliding

Total load on the foundation when the tank is empty $=14640112-94450=5195071 \mathrm{~N}$
Horizontal force on the base $=1166971.3 \mathrm{~N}$

Assuming co-efficient of friction of 0.5 .

So, factor of safety against sliding $=\frac{0.5 \times 519571}{1166971.3}=2.23>2.0$ \qquad Hence, OK.

Check for overturning

Factor of safety against overturning $=\frac{5195071 \times 8}{1166971.3 \times 16.07}=2.22>2.0$Hence, OK.

Figure 4.12: Details of reinforcement in Intze tank

V DESIGN OF INTZE TANK USING STADD PRO SOFTWARE

STADD.Pro is one of the most widely used structural analysis and design software products worldwide developed by Bentley

5.1 DESIGN PROCEDURE

Open STAAD.pro

1) Click on new project > add file name > Select 'space' > Length (in m), Force (in KN) > Select add beam option and click on finish.
2) For elevated frame \rightarrow Go to > Geometry > Run structure wizard > select Surface/plate model > cylindrical surface
$>$ Close it to transfer to modelling Length: 12 m , Division along length: 5 Nos., Start radius: 11.0 m , Division along periphery: 8 (column) End radius: 9.0 m .
3) Using Add beam selecting top node and bottom node. Repeat along periphery for required number of columns.
4) Copy all vertical members using $\mathrm{ctrl}+\mathrm{C}$ and paste aside using $\mathrm{ctrl}+\mathrm{V}$.
5) Add intermediate nodes along length to add required number of beams in horizontal direction. Connect all node in a plane to form a circular beam.
6) Repeat the same process at top to get circular girder.
7) For bottom dome \rightarrow Geometry $>$ Run structure wizard $>$ select surface/plate model $>$ Spherical cube $>$

Select spherical cap (Bottom dome). Close it to transfer to modelling, Diameter of sphere: 15, Base Diameter: 9. (Rise of Bottom dome $=1.50 \mathrm{~m}$)
8) Shift the obtained conical dome to top of bottom ring beam, Measure distance using 'display node to node distance' tool. Select all plates $>$ Right click mouse $>$ Move $>$ add (-) sign to above distance to rest on top beam.
9) For Conical Slab \rightarrow Geometry > Run structure wizard > select surface/plate model > cylindrical surface Length: 3.6055 m ; Division along length: 1; Start radius: 9m; Division along periphery: 8(column) End radius: 15m.
10) Shift the obtained conical slab to top beam measure distance using 'display node to node distance' tool. Select all plates $>$ Right click mouse $>$ Move $>$ add $(-)$ sign to above distance to rest on top beam.
11) For Cylindrical wall \rightarrow Geometry $>$ Run structure wizard $>$ select surface/plate model $>$ cylindrical surface Length: 4.5 m ; Division along length: 1 ; Start radius: 15 m ; Division along periphery: 8 ; End radius: 15 m .
12) Shift the obtained cylindrical wall to top of conical slab measure distance using 'display node to node distance' tool. Select all plates $>$ Right click mouse $>$ Move $>$ add (-) sign to above distance to rest on top beam.
13) For top dome \rightarrow Geometry $>$ Run structure wizard $>$ select surface/plate model $>$ Spherical cube $>$ Selects spherical cap (Bottom dome). Close it to transfer to modelling, Diameter of sphere: 25, Base Diameter: 15. (Rise of Bottom dome $=2.50 \mathrm{~m}$)
14) Support \rightarrow General $>$ Support $>$ create $>$ Fixed $>$ Add $>$ Assign of selected nodes

Figure 5.1: Intze water tank model

5.2 GEOMTRY OF STRUCTURE

Go to \rightarrow GENERAL $>$ Property $>$ define $>$ define the physical properties of all components: -

- Thickness of top dome $=0.15 \mathrm{~m}$
- Thickness of Cylindrical wall $=0.30 \mathrm{~m}$
- Bottom ring beam : Depth $=0.95 \mathrm{~m} \quad ;$ Width $=0.75 \mathrm{~m}$
- \quad Thickness of conical slab $=0.30 \mathrm{~m}$
- Thickness of bottom slab $=0.30 \mathrm{~m}$
- \quad Circular Girder $=0.90 \mathrm{~m} \times 0.75 \mathrm{~m}$
- Diameter of circular column $=0.50 \mathrm{~m}$
- Support section braces: Depth $=0.30 \mathrm{~m}$; Width $=0.050 \mathrm{~m}$
- Bottom circular girder: Depth $=1.0 \mathrm{~m}$; width $=0.75 \mathrm{~m}$.

Assign all the properties component wise.
Go to $>$ view $3 \mathrm{D}>$ view 3 D structure

Figure 5.2: Intze tank 3D model

5.3 LOAD APPLICATION

Go to \rightarrow GENERAL $>$ Load \& defination > define > define the physical properties of all components: -

1) Application of dead load:

Figure 5.3: Application of Dead load
2) Application of live load i.e. hydrostatic pressure (When tank is full):

Figure 5.4: Application of Hydrostatic pressure (Live load)
3) Application of Wind load i.e. hydrostatic pressure (When tank is full):

Figure 5.5: Application of Wind load

5.4 DESIGN

- Go to \rightarrow DESIGN $>$ Concrete $>$ Current code: IS $456>$ Define parameters $>$ Select required parameters and insert values

Figure 5.6: Showing applied design parameters

- After applying all the parameters, Go to \rightarrow Load \& definition $>$ Load case details $>$ Add $>$ Auto load combination > Select load combination code: Indian Code > Select load combination category: General Select all load combinations > Add > Close.

5.5 ANALYSIS

Go to \rightarrow Analysis/Print > Perform Analysis > All > Add > Analyze > Run analysis > Look for 0 Errors \& 0 Warnings $>$ go to post processing mode $>$ done $>$ Apply all $>\mathrm{Ok}$

Figure 5.7: Stadd analysis when tank is full

Figure 5.8: Stadd analysis when tank is empty

6 STADD PRO RESULT \& OUTPUT

1) Result showing stresses on plate in different condition:

Figure 5.9: Maximum absolute \& principal stress when tank is full

Figure 5.9: Maximum absolute $\&$ principal stress when tank is empty
2) Result showing end stresses on beam in different condition:

Figure 5.11: Beam end forces when tank is full

Figure 5.12: Beam end forces when tank is empty
4) Steel reinforcement details generated by STADD Pro. :

Figure 5.11: Reinforcement details of top ring beam

Figure 5.11: Reinforcement details of bottom ring beam

Figure 5.11: Reinforcement details of top circular girder

Figure 5.11: Reinforcement details of support brace

Figure 5.11: Reinforcement details of column when tank is empty

- It is observed that only at support columns, different reinforcement results has been given by STADD analysis in both conditions i.e. when tank is full \& when tank is empty.
- Maximum absolute pressure observed at plates when tank is in full condition ranges minimum $0.130 \mathrm{~N} / \mathrm{mm}^{2} \&$ maximum $58.40 \mathrm{~N} / \mathrm{mm}^{2}$. And when tank is in empty condition $0.099 \mathrm{~N} / \mathrm{mm}^{2}$ to $8.49 \mathrm{~N} / \mathrm{mm}^{2}$.

VI CONCLUSION

- An Intze water is designed with 90 KL capacity with 12 m staging has designed with M30 grade of concrete.
- We design the tank by both manually and using STAAD Pro, the program results shown that design is safe
- After completion of Intze water tank design in STAAD Pro and from manual calculations we conclude that design is safe.
- Though design is safe but we observed that reinforcement is less when compared with manual calculations.
- There is an increase in moment when the height of the structure increases.
- STAAD Pro gives more accurate, economical \& fast result as that of manual calculations.
- When using fix joint at the base its remarkable reduction in base settlement.
- This type tank is simplest form as compare to the circular tank.
- We have given the inclination to the staging of water tank because as respected inclination the tank performs better than that type of straight one.
- The staging has been designed with maximum safety and effects due to seismic force and wind force are also taken into account.

VII REFERENCE

> Text book: Design of Reinforced Concrete Structures by S. Ramamrutham.
$>$ I.S-3370 (Part IV-1967). Code of Practice for Concrete Structures for the storage of liquids.
> I.S-3370 (Part II-1967). Code of practice for concrete structures for the storage of liquids.
> Manchalwar, Atulkumar, and S. V. Bakre. International Journal of Dynamics and Control (2020): 1-10.
> I.S:456-2000. Indian Standard Code of Practice for Reinforced Concrete.
> I.S:875-1987 Part-III code design of wind loads.
> Manchalwar, A., and S. V. Bakre. Soil Mechanics and Foundation Engineering 57.2 (2020): 170-177.
> Ranjit Singh Lodhi \& Dr.Vivek Garg., (2014). —Design of Intze Tank in Perspective of Revision of IS: 3370, Vol. - 03 Issue No.9, pp: 1193-1197.
> Ankita D Katkar,Sanjay K Bhadke,"Analysis and Design of Intze Water Tank" IOSR Journal of Engineering.
> Issar Kapadia, Nilesh Dholiya, Purav Patel and Prof. Nikunj patel "Parametric study of RCC staging (support structure) for overhead water tanks as per IS: 3370", IJAERD, Volume 4, Issue 1, January -2017.
> Central Institute of Technology, Kokrajhar, Department of Civil Engineering, Project report on Design and analysis of R.C.C. overhead tank.

